Unit 13: The Earth, the Moon, and the Sun

This unit describes the relative positions of the sun, Earth, and moon and changes associated with them. Students will learn about eclipses, tides, and seasons.

Student Goals

- Understand why Earth can support life.
- Describe features of the moon.
- Identify solar and lunar eclipses.
- Identify the phases of the moon and the relative positions of the moon, Earth, and sun.
- Recognize the relationship of tides to the relative positions of the Earth, moon, and sun.
- Understand what causes the seasons.

Unit Focus

- Understand the relationships between events on Earth and the movements of the Earth, its Moon, the other planets and the Sun. (SC.E.1.4.1)
- Know how the characteristics of other planets and satellites are similar to and different from those on the Earth. (SC.E.1.4.2)
- Know the various reasons that Earth is the only planet in our Solar System that appears to be capable of supporting life as we know it. (SC.E.1.4.3)

- Know how climatic patterns on Earth result from an interplay of many factors (Earth's topography, its rotation on its axis, solar radiation, the transfer of heat energy where the atmosphere interfaces with lands and oceans, and wind and ocean currents). (SC.D.1.4.1)

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
corona .. the low-density cloud of gases

surrounding the sun \begin{tabular}{l}
craters .. holes or bowl-shaped depressions on a

moon or planet

\quad

ebb tide ... the movement of a tidal current away

from the shore
\end{tabular}

maria (MAR-ee-uh) lunar seas or plains on the moon which
appear dark
meteors
\qquadfragments of rocky material from space that burn as they fall through Earth's atmosphere; also known as meteoroids
moon phase \qquad the changing appearance of the moon which depends on the moon's position relative to the sun
neap tide \qquad tide occurring at the first and third quarters of the moon when the sun, Earth, and moon form a right angle; produces tides in a medium range
orbit \qquad (noun) the path of an object revolving around another object; (verb) to revolve in an orbit around another object
partial eclipse \qquad an event which occurs when part of the sun is blocked out by the moon
penumbra \qquad part of a shadow cast by an object in which light from the source is only partly blocked
revolve \qquad to move around another heavenly body Examples: the moon revolves around Earth; planets revolve around the sun
rotate \qquad to spin on an axis Example: Earth rotates, causing day and night
seasons \qquad the four divisions of the year characterized by differences in weather and the number of hours of daylight
solar eclipse \qquad an event which occurs when the moon passes between Earth and the sun
solstice \qquad either of the two times a year when the sun is at its greatest apparent distance north or south of the equator; marks the first day of summer and winter
spring tide \qquad tide that occurs when the sun, moon, and Earth are in a straight line
tide \qquad the rise and fall of the oceans caused by the gravitational attraction between the sun, Earth, and moon
total eclipse
an event which occurs when the sun is completely blocked out by the moon
umbra
the part of a shadow cast by an object in which light from the source is completely blocked

Introduction

Through scientific study and space exploration, we have learned that Earth exists as a part of a larger system called the solar system. Within our solar system, the moon and Earth have a very important relationship. The relationship between sun, Earth, and moon affects many of the everyday occurrences that we take for granted-the tides, the amount of solar energy, the length of our days and nights, and the seasons.

Earth seen from the moon. Learning about this relationship helps us to understand these daily occurrences and to understand our need for future exploration of the world beyond our Earth.

The Relationship of the Earth and the Moon

Earth has one moon. The moon revolves around Earth about once a month. The moon also turns, or rotates, on its axis one time per month. Because of this, we only see one side of the moon. The moon does not give off light of its own. It reflects the light of the sun.

Earth has a blanket of air surrounding it called an atmosphere. The moon does not have an atmosphere because it does not have a strong enough gravitational force to hold a blanket

Without an atmosphere and water, the moon is unable to support life. of air around it. Since there is no atmosphere on the moon, there is no water. Without an atmosphere and water, the moon is unable to support life.

Earth is the third planet from the sun. Earth's atmosphere is different from the other planets. It contains oxygen and water vapor and thus can support life. The atmosphere also protects Earth from extremes in

When viewed from Earth, the surface of the moon has light and dark areas.
temperatures. Without an atmosphere, the moon is subjected to very high and low temperatures. The dark side of the moon may get as cold as -175° Celsius, and the lighted side may reach temperatures of 130° Celsius.

When viewed from Earth, the surface of the moon has light and dark areas, which sometimes combine to look like a person's face. The light-colored areas are highland areas. The highland areas have mountains that are much higher than any found on Earth. The parts of the moon that appear dark are called maria. Mare (singular for maria) is the Latin word for seas. The maria are flat areas that look like seas, except that they do not have any water in them.

The surface of the moon also has many bowl-like depressions called craters. Craters vary in diameter from a few inches to over 500 miles. Most of the craters were produced long ago by the impact of meteors. In contrast, Earth has only about a dozen well-known craters. Although many meteors travel towards Earth, most of those meteors burn up in Earth's atmosphere. The moon, on the other hand, has no atmosphere to affect the meteors' impacts. Additional craters

The surface of the moon also has many bowl-like depressions called craters.

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. lunar seas or plains on the moon which appear dark
2. to move around another heavenly body
3. holes or bowl-shaped depressions on a moon or planet
4. the rise and fall of the oceans caused by the gravitational attraction between the sun, Earth, and moon
\qquad 5. the four divisions of the year characterized by differences in weather and the number of hours of daylight
6. areas on the moon which are high mountain ranges and large craters; appear light in color
G. seasons
\qquad 7. to spin on an axis
\qquad 8. fragments of rocky material from space that burn as they fall through Earth's atmosphere
A. craters
B. highland areas
C. maria
D. meteors
E. revolve
F. rotate
\qquad
-
H. tide

Practice

Answer the following using complete sentences.

1. What are two conditions of Earth that allow it to support life?
\qquad
\qquad
\qquad
2. Is there life on the moon? \qquad
Why or why not? \qquad
\qquad
\qquad
\qquad
3. Why doesn't the moon have an atmosphere? \qquad
\qquad
\qquad
\qquad
4. Why does the moon have much hotter and much colder temperatures than Earth? \qquad
\qquad
\qquad
\qquad
\qquad
5. Why do we sometimes see a person's face in the moon? \qquad
\qquad
\qquad
\qquad
6. The word mare means sea in Latin, but how do the maria on the moon differ from the seas on Earth? \qquad
\qquad
\qquad
7. Describe the highland areas on the moon. \qquad
\qquad
8. What are the bowl-like depressions on the moon? What caused them? \qquad
\qquad
9. How large are the craters on the moon? \qquad
\qquad
\qquad
10. Why are the moon's craters so well preserved? \qquad
\qquad
\qquad
\qquad

Solar Eclipse

As a body follows its elliptical orbit, or path, around the sun, it casts a shadow thousands of miles long away from the sun. In the image to the left, the moon is casting a shadow. This shadow has two parts-the umbra, which is the cone-shaped inner part that is completely dark, and the penumbra, which is the partly shaded region surrounding the umbra.

A solar eclipse takes place when the moon passes into a straight line between the sun and Earth. When the moon is in this position, its shadow moves onto a small area of Earth. During a total eclipse of the sun, the moon totally blocks out the sun and, for a short time, becomes dark. Only a halo of light from the sun's rim, called a corona, can be seen. Other parts of Earth that fall in the penumbra experience a partial eclipse, where only part of the sun is blocked by the moon. A partial eclipse is seen by many more people than a total eclipse.

Lunar Eclipse

When the moon moves into Earth's shadow, we have a lunar eclipse. During a lunar eclipse, hardly any sunlight reaches the moon and, consequently, it looks very dim. A lunar eclipse will last about three or four hours. It is longer than a solar eclipse because Earth's shadow is very wide, and it takes a long time to pass through it. A lunar eclipse can be seen from more areas of Earth than a solar eclipse. Also, there are many more lunar eclipses than solar eclipses.

When the moon moves into Earth's shadow, we have a lunar eclipse.

Moon Phases

The moon moves around Earth in exactly the same way that the planets revolve around the sun. It takes the moon $271 / 3$ days to make one trip around Earth. The moon also rotates or spins on its axis one time as it revolves around Earth. While the moon is moving around Earth, Earth is also moving around the sun. Therefore, it takes about two more days for the moon to return to its original position in relation to the sun and Earth. It takes a total of $291 / 2$ days for the moon to pass from one new moon to the next new moon. This period of time is called a lunar month.

As the moon orbits Earth, sometimes the side that is lighted by the sun is facing Earth, and at other times part or all of the lighted side is facing away from Earth. The different portions of the lighted side of the moon that are visible as the moon revolves around Earth are known as moon phases.

The circle shows the phases of the moon as seen from Earth.

[^0]
Practice

Use the list below to write the correct term for each definition on the line provided.

corona elliptical lunar eclipse	lunar month moon phase orbit	partial eclipse penumbra solar eclipse	total eclipse umbra

\qquad 1. the measure of time it takes for the moon to pass from one new moon to the next
2. oval-shaped
3. the changing appearance of the moon which depends on the moon's position relative to the sun
4. part of a shadow cast by an object in which light from the source is only partly blocked
5. the part of a shadow cast by an object in which light from the source is completely blocked
6. the low-density cloud of gases surrounding the sun
7. an event which occurs when Earth blocks the light as it moves between the sun and the moon
8. the path of an object revolving around another object
9. an event which occurs when the moon passes between Earth and the sun
10. an event which occurs when part of the sun is blocked out by the moon
11. an event which occurs when the sun is completely blocked out by the moon

Practice

Identify the two eclipses shown in the diagrams below. Use the list below to label the parts of each. Write the correct term on the line provided. One or more terms will be used more than once.

Earth	solar
lunar	sun
moon	umbra
penumbra	

6. \qquad eclipse
12. \qquad eclipse

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. the time that it takes the moon to make one trip around Earth
\qquad 2. the amount of time that it takes the moon to go through its phases from one new moon to the next new moon
\qquad 3. the measure of time it takes the moon to go through its phases
\qquad 4. the different portions of the lighted side of the moon that we see as it revolves around Earth
A. one
B. lunar month
C. $291 / 2$ days see as it revolves around Earth
\qquad 5. the number of times the moon rotates during one revolution around Earth
\qquad 6. where the light of the moon comes from

Practice

Use the list below to complete the following statements. One or more terms will be used more than once.

corona	partial	shadows	three or four hours
lunar	partial eclipse	solar	total
lunar eclipse	penumbra	solar eclipse	umbra

1. Eclipses are caused by the \qquad cast by either moon or Earth as they pass by one another.
2. The part of a shadow that is cone-shaped and completely dark is the
\qquad .
3. The outer, partly shaded part of a shadow is called the
\qquad
4. A \qquad takes place when the moon passes in a straight line between the sun and Earth.
5. During a \qquad eclipse of the sun, the moon totally blocks out the sun, and for a short time it becomes dark.
6. A halo of light from the sun's rim, called the
\qquad , can be seen around the edges of the moon during a total eclipse.
7. A \qquad eclipse can be seen by more people than a \qquad eclipse.
8. A \qquad occurs when only part of the moon passes in front of the sun.
9. When the moon moves into Earth's shadow, we have a
\qquad
10. During a lunar eclipse, hardly any sunlight reaches the moon, and it looks very dim for about \qquad .
11. There are more \qquad eclipses than
\qquad eclipses.
12. A \qquad eclipse can be seen from more areas of Earth than a solar eclipse.

Practice

Answer the following questions using the weather section of your local newspaper or the Internet; then do the activity that follows.

1. What time will the moon rise today? \qquad
2. What time will the moon set today? \qquad
3. On what date this month is there a full moon? \qquad
4. On what date this month is there a new moon? \qquad
5. Go outside and observe the moon tonight after it rises. (Check the time in the newspaper.)
6. Fill out the information on the chart below, noting the date and time of your observation. Draw the shape of the moon that you saw. Use a compass or stationary landmark to determine the location of the moon.
7. Record the same information on the same night of the week for the next three weeks and record your findings.
8. Did your results correspond with the information the newspaper gave?

Explain. \qquad

Date	Time	Shape	Location

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. phase when the moon is between Earth and the sun; it cannot be seen because the dark side is facing Earth
\qquad 2. phase when the moon is on the opposite side of Earth from the sun; we see the entire lighted side
A. crescent moon
B. full moon
C. gibbous moon
3. phase just before and after the new moon; only a slice of the lighted side is seen
\qquad 4. phase when the moon is
D. new moon
halfway between the new moon and full moon; we see one-half of the light side and one-half of the dark side
E. orbit
\qquad 5. phase just before and after the full moon; looks lopsided
6. the path that the moon takes around Earth
F. quarter moon

Practice

Name each phase of the moon that is shown below. In the column on the right, tell where the moon is in relation to Earth and sun at each phase.
1.

Phase
2.

3.

4.

5.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: New Moon-when the moon is in between Earth and the sun, the unlighted side of the moon is facing Earth and cannot be seenCrescent Moon-just before and after the new moon; only a slice of the lighted side is seen

 Quarter Moon-halfway between the new moon and full moon; half the moon is dark and half is lighted

 Gibbous Moon—just before and just after a full moon; over half of the moon is lighted; it appears lopsidedFull Moon-when the moon is on the opposite side of Earth from the sun; the entire lighted side is facing Earth

